Translation for Massive Open Online Courses

Massive Open Online Courses have been growing rapidly in size and impact yet the language barrier constitutes a major growth impediment in reaching out to all peoples and educating all citizens. Translation for Massive Open Online Courses (TraMOOC) aims at tackling this impediment by developing high-quality translation of all types of text genre included in MOOCs from English into eleven European and BRIC languages (DE, IT, PT, EL, DU, CS, BG, CR, PL, RU, ZH) that constitute strong use cases, are hard to translate into, and have weak MT support.

Phrase-based and syntax-based statistical machine translation models will be developed for addressing language diversity and supporting the language-independent nature of the methodology. An innovative multi-modal automatic and human evaluation schema will further ensure translation quality. For human evaluation, an innovative, strict-access control, time- and cost-efficient crowdsourcing setup will be used.

Translation experts, domain experts and end users will also be involved. Separate task mining applications will be employed for implicit translation evaluation: topic detection will be applied to source and translated texts and the resulting entity lists will be compared, leading to further qualitative and quantitative translation evaluation results and sentiment analysis performed on MOOC users’ blog posts will reveal end user opinion/evaluation regarding translation quality.

Results will be combined into a feedback vector and used to refine parallel data and retrain translation models towards a more accurate second-phase translation output. The project results will be showcased and tested on the Iversity MOOC platform and on the VideoLectures.NET digital video lecture library.

Learn more: http://tramooc.eu/


  • Start date: 1 Feb 2015
  • PI: Andy Way (DCU) - Coordinator
  • Acronym: TraMooc
  • Title: Translation for Massive Open Online Courses
  • Website: http://tramooc.eu/
  • CORDIS: https://cordis.europa.eu/project/id/644333
  • Grant ID: 644333
  • Overall budget: €3,223,835
Project Contact
  • Andy Way (DCU)
    Coordinator